Category Archives: Azure Security Center

How to extend Azure Security Center protection to all resources through Azure Arc

Azure Security Center (ASC) was originally developed with the intention of becoming the reference tool for protecting resources in the Azure environment. The much felt need of customers to protect the resources located in environments other than Azure has led to an evolution of the solution that, thanks to integration with Azure Arc, allows you to extend the protection and security management tools to any infrastructure. This article explains how Azure Security Center and Azure Arc allow you to protect non-Azure resources located on-premises or on other cloud providers, as virtual machines, Kubernetes services and SQL resources.

The adoption of Azure Defender using the principles of Azure Arc

Azure Arc allows you to manage workloads residing outside Azure, on the on-premises corporate network or at another cloud provider. This management experience is designed to provide consistency with native Azure management methodologies.

Thanks to the fact thatAzure Security Center and Azure Arc can be used jointly, you have the ability to offer advanced protection for three different scenarios:

Figure 1 - Protection scenarios

By enabling the Azure Defender protection of workloads at the subscription level in the Azure Security Center, it is also possible to consider the resources and workloads residing in hybrid and multicloud environments, all in an extremely simple way thanks to Azure Arc.

Azure Defender for Arc-enabled server systems

By connecting a server machine to Azure via Arc, it is considered to all intents and purposes as an Azure resource. Each connected machine has a specific ID, is included in a resource group and benefits from standard Azure constructs such as Azure Policies and tagging. This applies to both Windows and Linux systems.

To offer this experience, the installation of the specific Azure Arc agent is required on each machine that is planned to connect to Azure ("Azure Connected Machine").

The Azure Arc Connected Machine agent consists of the following logical components:

  • TheHybrid Instance Metadata service (HIMDS) that manages the connection to Azure and the Azure identity of the connected machine.
  • TheGuest Configurationagent that provides in-guest policy and guest configuration features.
  • TheExtension Manageragent that manages installation processes, uninstalling and updating machine extensions.

Figure 2 – Azure Arc Agent Components

The Connected Machine agent requires secure outbound communication to Azure Arc on TCP port 443.

This agent provides no other features and does not replace the Azure Log Analytics agent, which remains necessary when you want to proactively monitor the operating system and workloads running on the machine.

For more information about installing Azure Arc, seethis official Microsoft document.

Azure Arc-enabled servers can benefit from several Azure Resource Manager-related features such as Tags, Policies and RBAC, as well as some features related to Azure Management.

Activating Azure Defender for Server with Azure Arc

The projection of server resources in Azure using Arc is a useful step to ensure that all the machines in the infrastructure are protected by Azure Defender for Server. Similar to an Azure VM, it will also be necessary to deploy the Log Analytics agent on the target system. To simplify the onboarding process this agent is deployed using the VM extension, and this is one of the advantages of using Arc.

Once the Log Analytics agent has been installed and connected to a workspace used by ASC, the machine will be ready to use and benefit from the various security features offered in the Azure Defender for Servers plan.

For each resource, it is possible to view the status of the agent and its current security recommendations:

Figure 3 – Azure Arc Connected Machine in ASC

In case there is a need to onboard a non-Azure server in Azure Defender with an operating system version not yet supported by the Azure Arc agent, however, it is possible to perform onboarding by installing only the Log Analytics agent on the machine.

The icons in the Azure portal allow you to easily distinguish the different resources:

Figure 4 - Icons of the different resources present in ASC

 

Azure Defender for Arc-enabled Kubernetes resources

Azure Defender for Kubernetes also allows you to protect clusters located on-premises with the same threat detection features offered for Azure Kubernetes Service clusters (AKS).

For all Kubernetes clusters other than AKS, is necessary connect the cluster environment to Azure Arc. Once the cluster environment is connected, Azure Defender for Kubernetes can be activated as cluster extension on Azure Arc-enabled Kubernetes resources.

Figure 5 - Interaction between Azure Defender for Kubernetes and the Kubernetes cluster enabled for Azure Arc

The extension components collect the Kubernetes audit logs from all the nodes of the cluster control plane and send them to the back-end of Azure Defender for Kubernetes in the cloud for further analysis. The extension is registered with a Log Analytics workspace that is used for the data pipeline, but the audit logs are not stored in the Log Analytics workspace.

The extension also allows you to protect Kubernetes clusters located at other cloud providers, but it does not allow you to contemplate their managed Kubernetes services.

Azure Defender for Arc-enabled SQL Server resources

Azure Defender for SQL allows you to constantly monitor SQL Server implementations for known threats and vulnerabilities. These features are also usable not only for virtual machines in Azure, but also for SQL Server activated in an on-premises environment and in multicloud deployment. Azure Arc-enabled SQL Servers are also part of Azure Arc for servers. To enable Azure services, the’SQL Server instance must be registered with Azure Arc using the Azure portal and a special registration script. After registration, the instance will be represented on Azure as a resource SQL Server – Azure Arc. The properties of this resource reflect a subset of the SQL Server configuration settings.

Figure 6 - Diagram illustrating the Azure Arc architecture for SQL Server resources


Conclusions

Manage security and maintain control of workloads running on-premises, in Azure and on other cloud platforms it can be particularly challenging. Thanks to Azure Arc, it is possible to easily extend Azure Defender coverage to workloads residing outside the Azure environment. Furthermore, Azure Security Center allows you to obtain detailed information on the security of your hybrid environment in a single centralized console, useful for effectively controlling the security of your IT infrastructure.

How to improve security postures by adopting Azure Security Center

Optimal adoption of cloud solutions, useful for accelerating the digital transformation of businesses, must include a process capable of ensuring and maintaining a high degree of security of its IT resources, regardless of the deployment models implemented. Have a single infrastructure security management system, that strengthens your environment's security postures and provides enhanced threat protection for workloads, wherever they reside, becomes an indispensable element. The Azure Security Center solution achieves these goals and can address key security challenges. This article describes the features of the solution that allow you to improve and control the security aspects of the IT environment.

The challenges of cloud security

Among the main challenges that must be faced in the security field by adopting cloud solutions we find:

  • Always rapidly changing workloads. This aspect is certainly a double-edged sword of the cloud in that on the one hand, end users have the ability to get more out of solutions, on the other hand, it becomes complex to ensure that the constantly evolving services live up to their standards and that they follow all the best security practices.
  • Increasingly sophisticated attacks. No matter where your workloads are running, security attacks adopt sophisticated and advanced techniques that require you to implement reliable procedures to counter their effectiveness.
  • Resources and expertise in the field of security not always up to par to address security alerts and ensure that environments are protected. Security is an evolving front and staying up to date is a constant and difficult challenge to achieve.

Azure Security Center can effectively respond to the challenges listed above by enabling you to prevent, detect and address security threats affecting Azure resources and workloads in hybrid and multicloud environments. Everything runs at the speed of the cloud, as the solution is fully natively integrated into the Azure platform and is able to ensure simple and automatic provisioning.

The security pillars covered by Azure Security Center

Azure Security Center features (ASC) are able to sustain two great pillars of cloud security:

  • Cloud Security Posture Management (CSPM): ASC is available for free for all Azure subscriptions. Enabling takes place when you visit the ASC dashboard for the first time in the Azure portal or by enabling it programmatically via API. In this mode (Azure Defender OFF) features related to the CSPM area are offered, including:
    • A continuous assessment that reports recommendations related to the security of the Azure environment. ASC continually discovers new resources that are deployed and assesses whether they are configured based on security best practices. If not,, resources are flagged and you get a priority list of recommendations for what you should fix to get them protected. This list of recommendations is taken and supported by Azure Security Benchmark, the Azure-specific set of guidelines created by Microsoft, this contains security and compliance best practices based on common frameworks. This benchmark is based on the controls of the Center for Internet Security (CIS) and the National Institute of Standards and Technology (NIST), with a focus on cloud-centric security.
    • Assigning a global score to your environment, that allows you to assess the risk profile and take action to take remediation actions.
  • Cloud workload protection (CWP): Azure Defender is the CWP platform integrated in ASC that offers advanced and intelligent protection of resources and workloads residing in Azure and in hybrid and multicloud environments. Enabling Azure Defender offers a range of additional security features as described in the following paragraphs.

Figure 1 – Pillars of Azure Security Center

What types of resources can be protected with Azure Defender?

Enabling Azure Defender extends the functionality of the free mode, also to workloads running in private clouds, at other public clouds and hybrid environments, providing comprehensive management and unified security.

Figure 2 – Azure Security Center security scopes

Among the main features of Azure Defender we find:

  • Microsoft Defender for Endpoint. ASC integrates with Microsoft Defender for Endpoint to provide comprehensive functionality of Endpoint Detection and Response(EDR). With this integration, you can take advantage of the following features:
    • Automated Onboarding: Once the integration is activated, the Microsoft Defender for Endpoint sensor is automatically enabled for the servers monitored by the Security Center, except for Linux and Windows Server systems 2019, for which it is necessary to make specific configurations. Server systems monitored by ASC will also be present in the Microsoft Defender for Endpoint console.
    • Microsoft Defender for Endpoint alerts will also be displayed in the ASC console, in order to keep all reports in a single centralized console.
  • Vulnerability Assessment for Virtual Machines and Container Registries. Vulnerability scanning included in ASC is done through the solutionQualys, This is recognized as a leader to identify in real time any vulnerabilities present on the systems. No additional license is required to take advantage of this feature.
  • Hybrid cloud and multicloud protection. Thanks to the fact that Azure Defender for Servers take advantage of Azure Arc you can simplify the onboarding process, and enable the protection of virtual machines running in AWS environments, GCP or hybrid cloud. All of which includes several features, including, automatic provisioning of agents, policy management, vulnerabilities and EDR (Endpoint Detection and Response) integrated. Furthermore, thanks to the multicloud support of Azure Defender for SQL, it is possible to constantly monitor SQL Server implementations for known threats and vulnerabilities. These features are also usable for SQL Server activated in an on-premises environment, on virtual machines in Azure and also in multicloud deployments, contemplating Amazon Web Services (AWS) and Google Cloud Platform (GCP).
  • Access and application controls (AAC). It is a solution that can control which applications run on systems, this allows you to do the following:
    • Be alerted to attempts to run malicious applications, that may potentially not be detected by antimalware solutions.
    • Respect corporate compliance, allowing the execution of only licensed software.
    • Avoid using unwanted or obsolete software in your infrastructure.
    • Control access to sensitive data that takes place using specific applications.

All this is made possible thanks to machine learning policies, adapt to your workloads, which are used to create authorization and denial lists.

  • Threat protection alerts. Thanks to the integrated behavioral analysis features, the Microsoft Intelligent Security Graph and machine learning can identify advanced attacks and zero-day exploits. When Azure Defender detects a threat anywhere in your environment, generates a security alert. These alerts describe the details of the affected resources, the suggested correction steps and in some cases the possibility is provided to activate Logic Apps in response. All security alerts can be exported to Azure Sentinel, in third-party SIEM or other SOAR tools (Security Orchestration, Automation and Response) or IT Service Management.
  • Network map. To continuously monitor the security status of the network, ASC provides a map that allows you to view the topology of the workloads and evaluate if each node is configured correctly. By checking how the nodes are connected, you can more easily block unwanted connections which could potentially make it easier for an attacker to attack your network.

Azure Defender dashboard in ASC allows you to have visibility and undertake specific controls on CWP features for your environment:

Figure 3 – Azure Defender Dashboard

Azure Defender is free for the first 30 days, at the end of which if you choose to continue using the service, charges will be charged as reported in this document.

Conclusions

Azure Security Center helps you strengthen the security posture of your IT infrastructure. Thanks to the features offered, it is possible to implement best practices globally and obtain an overview in the security field. The solution combines the knowledge gained by Microsoft in the management of its services with new and powerful technologies suitable for dealing with and managing the issue of security in a conscious and effective way..

Protection of multi-cloud environments with Azure Security Center

The tendency of companies to adopt a multi-cloud strategy is increasingly widespread, but this operating model makes it particularly challenging to achieve high safety standards for your environment. To meet this need, Microsoft has officially made multi-cloud security support available in the Azure Security Center solution, allowing you to also contemplate amazon web services resources (AWS) and Google Cloud Platform (GCP). this article describes the features of this solution that provides a high degree of security and improves security postures in multi-cloud environments.

Azure Security Center (ASC) was originally developed as the best tool to protect resources in an azure environment. However, the need for customers to protect resources located on multiple public clouds is widespread and for this reason the product team has decided to expand the capacity for action, simplifying security management tools in multi-cloud environments. Azure Security Center can protect not only resources in hybrid environments but also contemplate multi-cloud architectures, including AWS and GCP.

Figure 1 – Multi-cloud and hybrid protection in Azure Security Center

These are the features that are made available to users to cover multi-cloud scenarios:

  • Connecting your AWS or GCP accounts to Azure Security Center provides a unified multi-cloud view of your environment's security postures. In particular, if the solutions AWS Security Hub or GCP Security Command Center detect incorrect configurations, these reports are included in the Secure Score template and in the compliance assessment against specific regulations (Regulatory Compliance), present in Azure Security Center.
  • Thanks to the fact that Azure Defender for Servers take advantage of Azure Arc you can simplify the onboarding process, and enable the protection of virtual machines running in AWS environments, GCP or hybrid cloud. All of which includes several features, including, automatic provisioning of agents, policy management, vulnerabilities and EDR (Endpoint Detection and Response) integrated. In particular, for vulnerability assessment functionality it is possible to perform manual or large-scale scans, and analyze the vulnerabilities detected, on scanned systems, through a unified experience.

These features complement multi-cloud support, also recently announced, of Azure Defender for SQL, this allows you to constantly monitor sql server implementations to detect known threats and vulnerabilities. these features are usable for sql server enabled in an on-premises environment, on virtual machines in Azure and also in multi-cloud deployment, contemplating Amazon Web Services (AWS) and Google Cloud Platform (GCP).

The solutionAzure Arc plays a fundamental role in all this and allows you to extend azure management services and principles to any infrastructure. To achieve this, Microsoft has decided to extend the model Azure Resource Manager to support hybrid and multi-cloud environments, this makes it easier to implement the security features in Azure on all infrastructure components.

Figure 2 – Azure Arc for hybrid and multi-cloud environments

The onboarding process and capabilities offered vary depending on the public cloud you intend to incorporate into Azure Security Center. the following paragraphs provide features for both amazon web services (AWS) that for Google Cloud Platform (GCP).

Amazon Web Services (AWS)

The onboarding process of your AWS account integrates the solution AWS Security Hub with Azure Security Center. In this way it is possible to obtain complete visibility and protection of these cloud environments to provide:

  • Automatic agent provisioning. ASC uses Azure Arc to deploy Log Analytics agent on board AWS instances.
  • Policy management.
  • Vulnerability management.
  • EDR (Endpoint Detection and Response) integrated.
  • Detecting security-impacting configuration errors.
  • A single view that can show ASC recommendations and AWS Security Hub.
  • An ASC score that also includes AWS resources.
  • Regulatory compliance assessments also for AWS resources.

The moment the connection with AWS Security Hub is configured correctly:

  • ASC scans AWS environment for EC2 instances, onboarding is done in Azure Arc, allowing log analytics agent to be installed. This gives you threat protection and gets security advice.
  • The ASC service scans new AWS EC2 instances each 6 hours and integrates them according to the configuration made.
  • The AWS CIS standard is shown in asc's regulatory compliance dashboard.
  • If the AWS Security Hub are enabled, recommendations will appear in the asc portal and regulatory compliance dashboard, after a few minutes after the completion of the onboarding process.

Figure 3 – AWS recommendations displayed in the ASC portal

To view active recommendations for your resources by type, you can use the security center asset inventory page and apply the specific filter for the type of aws resource that interests you:

Figure 4 – Display filters for AWS resources

Google Cloud Platform (GCP)

The onboarding mechanism of your GCP account allows you to integrate GCP Security Command with Azure Security Center and to have complete visibility and protection, in particular by providing:

  • Detecting security-impacting configuration errors.
  • A single view that can show ASC recommendations and GCP Security Command Center.
  • An ASC score that also includes GCP resources.
  • Integration of boards of GCP Security Command Center CIS-based within the Azure Security Center regulatory compliance dashboard.

The moment the connection with GCP Security Command completes:

  • The CIS GCP standard is shown in asc's regulatory compliance dashboard.
  • Security recommendations for resources located in GCP will appear in the Azure Security Center portal and regulatory compliance dashboard within minutes of completing onboarding.

Figure 5 – GCP recommendations displayed in the ASC portal

GCP virtual machine onboarding is currently manual, but you can adopt scripts to do it on a large scale.

On the Azure Security Center recommendations page, you can view all azure resource security recommendations along with AWS and GCP recommendations, thus obtaining a multi-cloud view.

Conclusions

The ability to adopt Azure Security Center as a centralized control solution, where security information from other public clouds also converges, combined with the possibilities given by integration with Azure Arc, to extend the protection of your systems, allows you to achieve a high degree of security and improve security postures in multi-cloud environments. Multi-cloud strategy adoption will become increasingly widespread, and Microsoft will continue to expand Azure Security Center to provide the best solutions to protect Azure, hybrid environments and multi-cloud operating models.

Azure Security: how to secure the Azure Deployment and Resource Management service

To achieve a high level of security in your public cloud environment, you need to provide protection for the individual resources that are activated, however it is also appropriate to monitor the service that allows the distribution and management of the resources themselves. In the Microsoft public cloud, the deployment and management service is defined as Azure Resource Manager, a crucial service connected to all Azure resources, therefore a potential and ambitious target for attackers. Microsoft, aware of this aspect, recently announced Azure Defender for Resource Manager. This article describes the features of this solution that allows you to carry out an advanced security analysis, in order to detect potential threats and be alerted to suspicious activity affecting Azure Resource Manager.

In Azure Defender, there are protections designed specifically for individual Azure services, such as for Azure SQL DB, Azure Storage, Azure VMs, and protections that transversally affect all those components that can be used by the various Azure resources. These include Azure Defender for Azure Network, Key Vault and the availability of Azure Defender for Azure DNS and Azure Resource Manager was also announced recently. These tools allow you to obtain an additional level of protection and control in your Azure environment.

Figure 1 – Azure Defender Threat Protection for Azure Workloads

Azure Resource Manager provides the management layer that allows you to create, update and delete resources in the Azure environment. It also provides specific features for the governance of the Azure environment, such as access control, locks and tags, that help protect and organize resources after they are distributed.

Azure Defender for Resource Manager automatically monitors the organization's Azure resource management operations, regardless of whether these are done through the Azure portal, Azure REST APIs, the command line interface or with other Azure programming clients.

Figure 2 – Protection of Azure Defender for Resource Manager

To activate this type of protection, simply enable the specific Azure Defender plan in the Azure Security Center settings:

Figure 3 - Activation of Azure Defender for Resource Manager

Azure Defender for Resource Manager can enable protection when the following conditions occur:

  • Resource management operations classified as suspicious, such as operations from dubious IP addresses, disabling the antimalware component and ambiguous scripts running through the VM extensions.
  • Use of exploitation toolkits such as Microburst or PowerZure.
  • Lateral shift from the Azure management layer to the Azure resources data plane.

A complete list of alerts that Azure Defender for Resource Manager is able to generate, is located in this Microsoft's document.

Security alerts generated by Azure Defender for Resource Manager are based on potential threats that are detected by monitoring Azure Resource Manager operations using the following sources:

  • Azure Activity Log, the Azure platform log providing information about subscription-level events.
  • Azure Resource Manager Internal Logs, not accessible by customers, but only by Microsoft personnel.

In order to obtain a better and more in-depth investigation experience, it is advisable to merge the Azure Activity Logs into Azure Sentinel, following the steps in this Microsoft's document.

Simulating an attack on the Azure Resource Manager layer using the PowerZure exploitation toolkits, Azure Defender for Resource Manager generates an alert with high severity, as shown in the following image:

Figure 4 – Alert generated by Azure Defender for Resource Manager

For such an alert you can also receive a notification by appropriately setting up an action group in Azure Monitor. Furthermore, if the integration between Azure Security Center and Azure Sentinel has been activated, the same alert would also be present in Azure Sentinel, with the relevant information necessary to start the investigation process and provide a prompt response to a problem of this type.

Conclusions

Protecting resources effectively in the Azure environment also means adopting the appropriate tools to deal with potential attacks that can exploit the distribution and management mechanisms of the resources themselves. Thanks to the new tool Azure Defender for Resource Manager it is possible to take advantage of effective protection in a fully integrated way in the Azure platform, without having to install specific software or enable additional agents.

How to increase the security of Azure Kubernetes-based microservices architectures

The spread of new application architectures based on microservices requires the adoption of cutting-edge solutions that ensure a high level of protection and that allow you to detect and respond to any security threats. Azure Defender is able to offer advanced and targeted protection of resources and workloads in hybrid environments and in Azure. This article describes how Azure Defender is able to guarantee the protection of instances of Azure Kubernetes Service (AKS) and scan the images in Azure Container Registry to detect any vulnerabilities.

Azure Kubernetes Service (AKS) is the fully managed Azure service that allows the activation of a Kubernetes cluster, ideal for simplifying the deployment and management of microservices-based architectures. Thanks to the features offered by AKS it is possible to scale automatically according to the use, use controls to ensure the integrity of the services, implement load balancing policies and manage secrets. In microservices-based architectures, it is also common to adopt the Azure Container Registry that allows you to create, store and manage container images and artifacts in a private registry. The use of this managed service is integrated with the container development and deployment pipelines.

Figure 1 – Example of an Azure Kubernetes-based microservices architecture

Azure Defender for Kubernetes

Through continuous analysis of the AKS environment, Azure Security Center (ASC) provides real-time threat protection for containerized environments and generates alerts if threats or malicious activity are detected, both at the host level and at the AKS cluster level.

Protection from security threats for Azure Kubernetes Service takes place at different levels:

  • Host level (provided by Azure Defender for servers): the Linux nodes of the AKS cluster are monitored through the Log Analytics agent. In this way the solution is able to detect suspicious activities such as connections from particular IP addresses and web shell detection. The agent is also able to monitor specific activities related to containers, such as creating privileged containers, access to API servers and the presence of SSH servers running inside a Docker container. The complete list of alerts that can be obtained by enabling Host level protection can be consulted in this document.
  • AKS cluster level (provided by Azure Defender for Kubernetes): at the cluster level, threat protection is based on the analysis of Kubernetes audit logs. It is a monitor that does not require the presence of specific agents and that allows you to generate alerts, monitoring AKS managed services, such as the presence of exposed Kubernetes dashboards and the creation of roles with elevated privileges. To see the complete list of alerts generated by this protection, you can access this link.

In an AKS environment it is recommended by best-prectices to also enable theAzure Policy add-on for Kubernetes as well as Azure Defender threat protection services. In this way, thanks to the iteration between the various platform components, in Azure Security Center you can analyze the following:

  • Audit logs from API servers
  • Raw security events (row) by the Log Analytics agent
  • Information on AKS cluster configuration
  • Workload configurations

Figure 2 – High-level architecture showing the interaction between ASC, AKS and Azure Policy

Azure Defender for container registry

The protection service Azure Defender for container registries allows you to evaluate and manage the presence of vulnerabilities in the images present in Azure Container Registry (ACR). Qualys' scanning tool allows you to perform an in-depth scan of images that takes place in three moments:

  • In case of push: each time an image is sent to the ACR, scan is automatically performed.
  • In case of recent extraction: because new vulnerabilities are discovered every day, it also analyzes any image for which an extraction has been made in the last 30 days.
  • When importing: Azure Container Registry has import tools to merge images into it from Docker Hub, Microsoft Container Registry or other ACR. All imported images are promptly analyzed.

During the scan, Qualys extracts the image and runs it in an isolated sandbox to track down any known vulnerabilities.

If any vulnerabilities are found, a notification will be generated in the Security Center dashboard. This alert will be accompanied by a severity classification and practical guidance on how to correct the specific vulnerabilities found in each image. To verify the images supported by the solution, you can access this link.

Figure 3 – High-level diagram showing ACR security using ASC

Activation and costs

The activation of these Azure Defender threat protection services can be done directly from the Azure portal:

Figure 4 – Enabling Kubernetes and ACR Azure Defender Security Services

Azure Defender modules in Azure Security Center are subject to specific costs that can be calculated using the tool Azure Pricing calculator. In particular, the cost of Azure Defender for Kubernetes is calculated on the number of cores of the VMs that make up the AKS cluster, while the cost of Azure Defender for Container registries is calculated based on scanned images.

Conclusions

Thanks to the coverage offered by ASC's Azure Defender services, it is possible to obtain a high degree of protection for application architectures based on microservices, that use Azure Kubernetes Service (AKS) and Azure Container Registry. Microsoft proves to be a provider capable of offering effective services for container execution in the cloud environment, flanked by modern and advanced security tools, useful both to quickly solve any problems in this area and to improve the security postures of your environment.

Integration between Azure Security Center and Microsoft Defender ATP

Microsoft Defender Advanced Threat Protection (MDATP) is a security platform for enterprise endpoints designed to prevent, detect, investigate and respond to security threats. This article discusses how Azure Security Center (ASC) is able to integrate with this platform and what are the aspects to consider to combine the different potentials and effectively contemplate the protection of servers.

Microsoft Defender Advanced Threat Protection (MDATP)

The main characteristics of the solution Microsoft Defender Advanced Threat Protection:

  • Advanced post-breach detection sensors: Thanks to sensors from Microsoft Defender ATP for Windows Servers, a wide range of behavioral signals can be collected.
  • Ability to perform post-breach checks by leveraging the power of the cloud: Microsoft Defender ATP is able to quickly adapt to changing threats as it uses the Intelligent Security Graph with signals from Windows, Azure and Office. With this powerful mechanism, you can respond quickly to unknown threats.
  • Threat intelligence: Microsoft Defender ATP generates alerts when it identifies tools, techniques and procedures used by attackers. The solution uses data generated by Microsoft 'hunters' and security teams, enriched by the intelligence provided by collaboration with different security partners.

The Microsoft Defender Advanced Threat Protection console (MDATP) is accessible to this link.

Features and benefits of integration

ASC integrates with MDATP to provide comprehensive Endpoint Detection and Response (EDR). With this integration, you can take advantage of the following features:

  • Automated Onboarding: the integration automatically activates the Microsoft Defender ATP sensor for Windows servers monitored by Security Center (except for systems Windows Server 2019, for which it is necessary to make specific configurations). Windows Server systems monitored by Azure Security Center will also be present in the Microsoft Defender ATP console.
  • Windows Defender ATP alerts will also appear in the Azure Security Center console, in order to keep all reports in a single centralized console. However, to perform a detailed analysis of the reports, please log on to the Microsoft Defender ATP console, which provides more information such as incident charts. From the same console, you can also view the timeline of all detected behaviors for a specific system, for a historical period of up to six months.

Enabling integration between ASC and MDATP

To enable this integration, you must use Azure Security Center (ASC) standard tier, which includes the license to activate MDATP on server systems.

  • For virtual machines in Azure you need to have the ASC standard tier at the subscription level:

Figure 1 – Activating ASC standard tier at subscription level for VMs in Azure

  • For virtual machines that don't reside in Azure, but on-premises or in other clouds, simply enable the ASC standard tier at the workspace level:

Figure 2 – Standard tier activation of ASC at the workspace level for non-Azure VMs

Furthermore, you must enable the following setting from Azure Security Center:

Figure 3 – Enabling integration between ASC and MDATP

To see the different ways to onboard servers, you can access this Microsoft's document.

When you use Azure Security Center to monitor servers, a Microsoft Defender ATP tenant is also automatically created (by default in Europe). If the Microsoft Defender ATP solution is used before using Azure Security Center, the data will be stored in the location specified when creating the tenant, even if you integrate with ASC later. The location where the data is stored cannot be changed post-deployment, but if you need to move your data to another geographic location, you should contact Microsoft Support.

Figure 4 – Data Storage retention

 

Threat Detection

In the presence of this integration, against a threat detection by MDATP, an alerts is also generated in the Azure Security Center, which becomes the centralized console for the collection of security reports.

Figure 5 – SecurityAlert present in the ASC workspace

Alert information can also be sent by email via Action Group:

Figure 6 - Report received by email from ASC in response to a detection of a threat

You can access the Microsoft Defender Security Center portal to investigate the alert in depth, where you will find the details.

Figure 7 – Alert details from the Microsoft Defender Security Center portal

Conclusions

Azure Security Center (ASC) and Microsoft Defender Advanced Threat Protection (MDATP) are two distinct solutions, but with important relationships, both as regards the aspects relating to licensing and for the operational management of the security of server systems. Thanks to this simple integration you can manage systems onboarding and also include MDATP reports in ASC, so you can effectively monitor your environment and respond to security threats on server systems.

Azure Security Center: Azure Storage protection

Azure Security Center, the cloud solution that allows you to prevent, detect and respond to security threats affecting hybrid architectures, it also provides enhanced protection for storage resources in Azure. The solution detects unusual and potentially harmful attempts to access or use Azure Storage. This article describes how to effectively protect storage in Azure with this solution, looking at the news recently announced in this area.

Azure Security Center (ASC) is possible to activate it in two different tiers:

  • Free tier. In this tier ASC is totally free and performs a continuous assessment, providing recommendations relating to the security of the Azure environment.
  • Standard tier. Compared to tier free adds enhanced threat detection, using behavioral analysis and machine learning to identify zero-day attacks and exploits. Through machine learning techniques and through the creation of whitelist is possible to control the execution of applications to reduce exposure to network attacks and malware. Furthermore, the standard level adds the ability to perform in an integrated manner a Vulnerability Assessment for virtual machines in Azure. Azure Security Center Standard supports several resources including: VMs, Virtual machine scale sets, App Service, SQL servers, and Storage accounts.

Advanced Threat Protection (ATP) for Azure Storage, it is one of several features in Azure Security Center Standard.

Figure 1 – Comparison of the features of the different tiers of ASC

Enabling the Security Center Standard tier is strongly recommended to improve security postures in your Azure environment.

The Advanced Threat Protection feature (ATP) for Azure Storage was announced last year, allowing you to detect common threats such as malware, access from suspicious sources (including TOR nodes), data exfiltration activities and more, but all limited to blob containers. Support for Azure Files and Azure Data Lake Storage Gen2 has also been included recently. This also helps customers protect data stored in file shares and data stores designed for the analysis of corporate big data.

Enabling this feature from the Azure portal is very simple and can be done at the Security Center-protected subscription level or selectively on individual storage accounts.

To enable this protection on all storage accounts in your subscription, you must go to the "Pricing & Settings” of Security Center and activate the protection of Storage Accounts.

Figure 2 – ATP activation for Azure Storage at the subscription level

If you prefer to enable it only on certain storage accounts, you need to activate it in the respective settings of Advanced security.

Figure 3 – ATP activation on the single storage account

When anomaly occurs on a storage account, security alerts are sent by email to Azure subscription administrators, with details of detected suspicious activity and related recommendations on how to investigate and resolve threats.

Details included in the event notification include::

  • The nature of the anomaly
  • The name of the storage account
  • The time of the event
  • The type of storage
  • Potential causes
  • The recommended steps to investigate what has been found
  • The actions to be taken to remedy what happened

Figure 4 – Example of a security alert sent in the face of a detection of a threat

In this example, the EICAR test file was used to validate that the solution was working correctly.. This is a file developed by the’European Institute for Computer Anti-Virus Research (EICAR) which is used to securely validate security solutions.

Security alerts can be viewed and managed directly from Azure Security Center, where details and actions to investigate current threats and address future threats are displayed..

Figure 5 – Example of a security alert in the ASC Security alerts tile

To get the full list of possible alerts generated by unusual and potentially malicious attempts to log in or use storage accounts, you can access the Threat protection for data services in Azure Security Center.

This protection is very useful even if you have architecture that uses the service Azure File Sync (AFS), which allows you to centralize the network folders of your infrastructure in Azure Files.

Conclusions

Business companies are increasingly moving their data to the cloud, looking for distributed architecture, high performance and cost optimization. All features offered by the public cloud require you to strengthen cybersecurity, particularly given the increasing complexity and sophistication of cyberattacks. By adopting Advanced Threat Protection (ATP) for Azure Storage, you can increase the level of storage security used in your Azure environment easily and effectively.

Azure Management services: What's New in April 2020

Starting from this month, the series of articles released by our community about what's new in Azure management services is renewed. They will be articles, published on a monthly basis, dedicated exclusively to these topics to have a greater level of depth.

Management refers to the tasks and processes required to better maintain business applications and the resources that support them. Azure offers many strongly related services and tools to provide a comprehensive management experience. These services are not exclusively for Azure resources, but they can potentially also be used for on-premises environments or other public clouds.

The following diagram shows the different areas related to management, which will be covered in this series of articles, in order to stay up to date on these topics and to better deploy and maintain applications and resources.

Figure 1 – Management services in Azure overview

Monitor

Azure Monitor for containers: support for monitoring the use of GPUs on AKS GPU-enabled node pools

Azure Monitor for containers has introduced the ability to monitor the use of GPUs in Azure Kubernetes Service environments (AKS) with nodes that take advantage of GPUs. They are currently supported as NVIDIA and AMD vendors.
This monitoring functionality can be useful for:

  • Check the availability of GPUs on the nodes, the use of the GPU memory and the status of GPU requests by pods.
  • View the information collected through the built-in workbook available in the workbook gallery.
  • Generate alerts on pod status

Export of alerts and recommendations to other solutions

Azure Security introduces an interesting feature that allows you to send security information generated by your environment to other solutions. This is done through a continuous export mechanism of alerts and recommendations to Azure Event Hubs or to Azure Monitor Log Analytics workspaces. This feature opens up new integration scenarios for Azure Security Center. The functionality is called Continuos Export and is described in detail in this article.

Workflow automation functionality

Azure Security Center includes the ability to have workflows to respond to security incidents. Such processes may include notifications, the initiation of a change management process and the application of specific remediation operations. The recommendation is to automate as many procedures as possible as automation can improve safety by ensuring that the process steps are performed quickly, consistent and according to predefined requirements. The Azure Security Center has been made available the functionality workflow automation. It can be used to automatically trigger the Logic Apps trigger based on security alerts and recommendations. Furthermore, manual trigger execution is available for security alerts and for recommendations that have the quick fix option available.

Integration with Windows Admin Center

It is now possible to include Windows Server systems residing on-premises directly from the Windows Admin Center in Azure Security Center.

Azure Monitor Application Insights: monitors Java applications codeless

The Java Application Monitor is now made possible without making changes to the code, thanks to Azure Monitor Application Insights. In fact, the new Java codeless agent is available in preview. Among the libraries and frameworks supported by the new Java agent we find:

  • gRPC.
  • Netty/Webflux.
  • JMS.
  • Cassandra.
  • MongoDB.

Retiring the solution for Office 365

For the solution “Azure Monitor Office 365 management (Preview)”, which allows you to send the logs of Office 365 to Azure Monitor Log Analytics is expected to be retired on 30 July 2020. This solution has been replaced by the solution of Office 365 present in Azure Sentinel and the solution “Azure AD reporting and monitoring”. The combination of these two solutions is able to offer a better experience in configuration and in its use.

Azure Monitor for Containers: support for Azure Red Hat OpenShift

Azure Monitor for Containers now also supports in preview the monitor for Kubernetes clusters hosted on Azure Red Hat OpenShift version 4.x & OpenShift versione 4.x.

Azure Monitor Logs: limitations on concurrent queries

To ensure a consistent experience for all users in consulting the Azure Monitor Logs, will be gradually implemented new limits of concurrency. This will help protect yourself from sending too many queries simultaneously, which could potentially overload system resources and compromise responsiveness. These limits are designed to intervene and limit only extreme usage scenarios, but they should not be relevant for the typical use of the solution.

Secure

Azure Security Center

Dynamic compliance packages available

The Azure Security Center regulatory compliance dashboard now includes thedynamic compliance packages to trace further industry and regulatory standards. The dynamic compliance packages can be added at subscription or management group level from the Security Center policy page. After entering a standard or benchmark, this is displayed in the regulatory compliance dashboard with all related data. A summary report will also be available for download for all standards that have been integrated.

Identity recommendations included in Azure Security Center tier free

Security recommendations relating to identity and access have been included in the Azure Security Center tier free. This aspect allows to increase the functionality in the cloud security posture management area for free (CSPM). Before this change, these recommendations were only available in the Azure Security Center Standard tier. Here are some examples of recommendations for identity and access:

  • “Multifactor authentication should be enabled on accounts with owner permissions on your subscription.”
  • “A maximum of three owners should be designated for your subscription.”
  • “Deprecated accounts should be removed from your subscription.”

Protect

Azure Backup

Cross Region Restore (CRR) for Azure virtual machines

Thanks to the introduction of this new feature in Azure Backup, it introduces the ability to start restores at will in a secondary region, making them completely controlled by the customer. To do this, the Recovery Service vault that holds the backups must be set to geographic redundancy; in this way the backup data in the primary region are geographically replicated in the secondary region associated with Azure (paired region).

Azure Files share snapshot management

Azure Backup introduces the ability to create Snapshots of Azure Files share, Daily, weekly, Monthly, and keep them until 10 years.

Figure 2 – Azure Files share snapshot management

Support for replacing existing disks for VMs with custom images

Azure Backup introduced support, during the recovery phases, to replace existing disks on virtual machines created with custom images.

SAP HANA backup

In Azure Backup, protection of SAP HANA DBs present in virtual machines is available in all major Azure regions. This functionality allows you to have SAP HANA database protection integrated and without having to provide a specific backup infrastructure. This solution is officially certified by SAP.

Evaluation of Azure

To test for free and evaluate the services provided by Azure you can access this page.

Azure Security Center: how to customize the solution to meet your security requirements

Azure Security Center is a cloud solution that helps prevent, detect and respond to security threats that affect resources in the Azure environment and workloads in hybrid environments. By assigning a global score to your environment, you can assess your risk profile and act to take remediation action in order to improve the security posture. The solution is based on general recommendations, but in some cases it is appropriate to customize it to better contemplate your security policies. This article describes how you can introduce this level of customization in order to increase the value provided by Azure Security Center.

Using custom security policies

The default recommendations in the solution are derived from general industry best practices and specific regulatory standards.

Figure 1 – Standard score and recommendations in Azure Security Center

Recently was introduced the ability to add your own Initiatives custom, to receive recommendations if security policies specifically set for your environment are not met. The custom initiatives that are created are fully integrated into the solution and will be covered in Secure Score and in compliance dashboards.

To create a initiative you can follow the steps below:

Figure 2 – Starting the process of creating a custom initiative

Within the Initiatives you can include Azure Policies built into your solution or your own custom policies.

In the example below, theinitiative includes the following two policies:

  • A custom that prevents peering against a Hub network that is in a given resource group.
  • A bult-in that verifies that Network Security Groups are applied to all subnets.

Figure 3 – Creating a custom initiative

Following, you need to proceed with the assignment of theinitiative custom:

Figure 4 – Starting the assignment process

 

Figure 5 – Assigning the custom initiative

 

Figure 6 – Displaying the assigned custom initiative

The display of the recommendations in Security Center is not immediate, but currently it takes about 1 hour and you can see it in the following section:

Figure 7 - Custom initiative in the Regulatory Compliance section

 

Disable default security policy

Under certain circumstances it may be desirable to disable certain controls present by default in the Azure Security Center solution, as they are not appropriate for your environment and you do not want to unnecessarily generate the events. To do this, you can take the following steps::

Figure 8 - Access to the Security Center default policy

 

Figure 9 – Selecting the default Security Center policy assignment

 

Figure 10 – Disabling a specific policy that is present by default

 

Conclusions

Azure Security Center natively provides a series of controls to constantly check for conditions that are considered anomalous and can have a direct impact on the security of your environment. The ability to introduce a level of customization into your solution, makes it more flexible and allows you to verify and apply security compliance policies on a large scale that are specific to your environment. To improve security postures it is essential to evaluate the adoption of this solution and applying a good level of customization it greatly increases its value.

Azure Security: how to do a Vulnerability Assessment using azure Security Center

Azure Security Center, the cloud solution that allows you to prevent, detect and respond to security threats affecting Azure resources and workloads in hybrid environments, recently enhanced with the ability to integrate a Vulnerability Assessment for Virtual Machines in Azure. This article explains how you can complete a vulnerability assessment process by using the Azure Security Center, examining the characteristics of the solution.

Vulnerability scanning included in Azure Security Center (ASC) is done through the solution Qualys, which is recognized as a leading tool for real-time identification of potential vulnerabilities in the systems. In order to use this feature you must adhere to the standard tier of Security Center, and in this case you will need to not incur additional licensing fees. The Standard tier also adds advanced threat detection (including threat intelligence), behavioral analysis, anomaly detection and security incidents and reports of conferral of threats.

If you wish to keep the tier free of ASC you can still make the deployment of solutions to perform a vulnerability assessment, which Qualys and Rapid7, but it is necessary to provide the management of the licensing costs, the distribution and configuration. For more details about the cost of Azure Security Center and for a comparison between the Free and the Standard tier, see the Microsoft's official documentation.

The most immediate and rapid method to scan for vulnerabilities in Azure is using the integrated solution Qualys in the Standard Tier of Azure Security Center. To enable it, simply go to the ASC Recommendations and select “Enable the built-in vulnerability assessment solution on virtual machines (powered by Qualys)“, come mostrato dall’immagine seguente:

Figure 1 - Recommendation of Azure Security Center to enable vulnerability assessment solution

Selecting this option Azure virtual machines are divided into the following categories:

  • Healthy resources: systems where the extension has been deployed to complete a vulnerability scan.
  • Unhealthy resources: machines where you can enable the extension to scan for vulnerabilities.
  • Not applicable resources: systems where the extension is not present and that it is not possible to enable it because they belong to the ASC tier free or because the operating system is among those not supported. Among the supported operating systems are: RHEL 6.7/7.6, Ubuntu 14.04/18.04, Centos 6.10/7/7.6, Oracle Linux 6.8/7.6, SUSE 12/15, and Debian 7/8.

Figure 2 - Enabling the solution

Selecting the machines of interest and pressing the button Remediate will be onboarded to the built-in Vulnerability Assessment solution. As a result, the specific extension will be installed on the systems and the first scan will be automatically started at the end of the installation.. The extesion is based on the Azure Virtual Machine agent and therefore runs in the Local Host context on Windows systems, and Root on Linux ones.

The names of the extension that will be present on the enabled systems are listed, for which the provider will always be Qualys:

  • Linux Machines: “LinuxAgent.AzureSecurityCenter”
  • Windows Machines: “WindowsAgent.AzureSecurityCenter”

As for extension updates, the same rules apply to other extensions, so the fewest versions of Qualys' scanner will be automatically deployed following an in-depth testing phase.. In some cases, you may need manual actions to complete the upgrade.

After the scan is complete, any vulnerabilities detected on the systems will be reported in the Recommendations by ASC.

Figure 3 – ASC notification reporting the presence of recommendations for intercepted vulnerabilities

Selecting the recommendation provides details of all vulnerabilities detected, severity and its status:

Figure 4 – List of detected security vulnerabilities

By selecting the single vulnerability you can see the details, potential impacts, remediation actions and affected systems.

Figure 5 – Information reported for each individual vulnerability detected

Conclusions

To strengthen the security posture of your environment you definitely should consider adopting Azure Security Center in the standard tier, that among the various functionality it allows to check that they are applied in a strict manner all safety criteria and allows to constantly monitor the compliance criteria. The inclusion in the solution of a vulnerability assessment tool, provided by Qualys, industry leader, adds further value to the solution, also be able to draw on the knowledge gained by this vendor in the discovery of vulnerabilities.