Category Archives: Azure Networking

Azure IaaS and Azure Stack: announcements and updates (July 2021 – Weeks: 29 and 30)

This series of blog posts includes the most important announcements and major updates regarding Azure infrastructure as a service (IaaS) and Azure Stack, officialized by Microsoft in the last two weeks.

Azure

Storage

Shared disks on Azure Disk Storage are now generally available on all Premium SSD and Standard SSD sizes

Shared disks can now be leveraged on smaller Premium SSDs from 4GiB to 128 GiB and all Standard SSDs from 4 GiB to 32 TiB. This expands shared disk support to Ultra Disk, Premium SSD, and Standard SSD enabling you to optimize for different price and performance options based on your workload needs.

Immutable storage with versioning for Blob Storage (preview)

Immutable storage with versioning for Blob Storage is now available in preview. Immutable storage provides the capability to store data in a write once, read many (WORM) state. Once data is written, the data becomes non-erasable and non-modifiable, and you can set a retention period so that files can’t be deleted until after that period has elapsed. Additionally, legal holds can be placed on data to make that data non-erasable and non-modifiable until the hold is removed. Immutable storage with versioning adds the capability to set an immutable policy on the container or object level. It also allows for the immutable protection of all past and current versions of any blob.

Networking

Next-generation firewall capabilities with Azure Firewall Premium

Microsoft Azure Firewall Premium is now available with this key features:

  • TLS inspection: Azure Firewall Premium terminates outbound and east-west transport layer security (TLS) connections. Inbound TLS inspection is supported in conjunction with Azure Application Gateway allowing end-to-end encryption. Azure Firewall performs the required value-added security functions and re-encrypts the traffic which is sent to the original destination.
  • IDPS: Azure Firewall Premium provides signature-based intrusion detection and prevention system (IDPS) to allow rapid detection of attacks by looking for specific patterns, such as byte sequences in network traffic or known malicious instruction sequences used by malware.
  • Web categories: Allows administrators to filter outbound user access to the internet based on categories (for example, social networking, search engines, gambling, and so on), reducing the time spent on managing individual fully qualified domain names (FQDNs) and URLs. This capability is also available for Azure Firewall Standard based on FQDNs only.
  • URL filtering: Allow administrators to filter outbound access to specific URLs, not just FQDNs. This capability works for both plain text and encrypted traffic if TLS inspection is enabled.

Application Gateway: new features for Web Application Firewall (WAF)

  • Bot protection: Web Application Firewall (WAF) bot protection feature on Application Gateway allows users to enable a managed bot protection rule set for their WAF to block or log requests from known malicious IP addresses. The IP addresses are sourced from the Microsoft Threat Intelligence feed. This rule set can be used alongside the OWASP core rule sets (CRS) to provide additional protection.

  • Geomatch custom rules: Web Application Firewall (WAF) geomatch custom rule feature on Application Gateway allows users to restrict access to their web applications by country/region. As with all custom rules, this logic can be compounded with other rules to suit the needs of your application.

Azure ExpressRoute: 3 New Peering Locations Available

Three new peering locations are available for ExpressRoute:

  • Campinas
  • Sao Paulo2
  • Dublin2

With this announcement, ExpressRoute is now available across 79 global commercial Azure peering locations.

New insights in Traffic Analytics

Azure Network Watcher Traffic Analytics solutions is used to monitor network traffic. It now provides WHOIS and Geographic data for all Public IPs interacting with your deployments and further adds DNS domain, threat type & threat description for Malicious IPs. Now, it also supports inter-zone traffic and VMSS level traffic insights.

Next-Generation Firewall functionality with Azure Firewall Premium

The adoption of an effective Azure environment protection strategy is essential and also requires a careful assessment of the features provided by the firewall solution you intend to use. Azure Firewall has been available for some time, Microsoft's managed and fully integrated public cloud service, that allows you to secure the resources present on the Virtual Networks of Azure. In specific business realities, particularly sensitive to security and requiring a high level of regulation, advanced features typical of a next generation firewall are required. For this reason, Microsoft has released Azure Firewall Premium, the firewall-as-a-service solution (FWaaS) which guarantees several advanced features to better protect Azure environments. This article explores the features of Azure Firewall Premium.

Azure Firewall is a network security service, managed and cloud-based, able to protect the resources attested on the Azure Virtual Networks and to centrally govern the related network flows. Furthermore, it has inherent features of high availability and scalability.

The Premium version allows you to get an additional level of protection from security threats, through features such as TLS Inspection and IDPS that guarantee greater control of network traffic in order to intercept and block the spread of malware and viruses. The features of TLS Inspection and IDPS require more performance, reason why Azure Firewall Premium, compared to the Standard tier, uses more powerful SKUs for its instances and is able to guarantee high levels of performance. Like the Standard SKU, Premium SKU can scale up to 30 Gbps and integrates with availability zones to guarantee a service level agreement (SLA) equal to 99,99 %. Azure Firewall got ICSA Labs certification, in addition, the Premium version complies with the PCI DSS security standard (Payment Card Industry Data Security Standard).

The functionality of Azure Firewall Premium

The new features of Azure Firewall Premium are configurable only through Firewall Policy. Firewall rules in "classic" mode continue to be supported and can only be used to configure the Standard version of Azure Firewall. Firewall Policies can be managed independently or with Azure Firewall Manager.

Azure Firewall Premium guarantees all the features present in the Azure Firewall Standard tier and in addition adds the following features typical of a next generation firewall.

Figure 1 - Azure Firewall Premium overview

The following chapters describe the new features introduced in Azure Firewall Premium.

TLS inspection

The standard security technology that allows you to establish an encrypted connection between a client and a server is the Transport Layer Security (TLS), formerly known as Secure Sockets Layer (SSL). This standard ensures that all data passing between clients and the server remains private and encrypted. Azure Firewall Premium is able to intercept and inspect TLS connections. To do this, a complete decryption of network communications is performed, the necessary security checks are performed and the traffic to be sent to the destination is re-encrypted.

The Azure Firewall Premium TLS Inspection solution is ideal for the following use cases:

  • Outbound TLS termination.

Figure 2 - Azure Firewall TLS Inspection for outbound traffic

  • TLS termination between spoke virtual networks (east-west).
  • Inbound TLS termination with Application Gateway. Azure Firewall communication flows can be deployed behind an Application Gateway. By adopting this configuration, incoming Web traffic passes both through the WAF of the Application Gateway and through the Azure Firewall. WAF provides Web application-level security, while Azure Firewall acts as a central control and logging point to inspect traffic between the Application Gateway and back-end servers. The Azure Firewall can in fact de-encrypt the traffic received from the Application Gateway for further inspection and encrypt it again before forwarding it to the destination Web server. For more details on this use case you can consult this Microsoft's document.

Figure 3 – Implementation of the Application Gateway before Azure Firewall

To enable TLS Inspection in Azure Firewall Premium it is advisable to use a certificate present in an Azure Key Vault. Azure Firewall is accessed to the key vault to retrieve certificates using a managed identity. For more information about using certificates, for this Azure Firewall Premium feature, you can see the Microsoft's official documentation.

These use cases allow customers to adopt a zero trust model and implement end-to-end network segmentation.

IDPS

An Intrusion Detection and Prevention System (IDPS) allows you to monitor network activities to detect malicious activities, record information about these activities, report them and, optionally, try to block them. Azure Firewall Premium provides signature-based IDPS and is able to enable attack detection by searching for specific patterns, as sequences of bytes in network traffic or known malicious instruction sequences used by malware. IDPS signatures are automatically managed and continuously updated.

This capability works for all ports and protocols, but despite some detections they can also run with encrypted traffic, enabling TLS Inspection is important to make the best use of the IDPS.

Figure 4 – IDPS mode

Filtering URL

URL filtering allows you to filter outbound access to specific URLs, and not just for certain FQDNs. In fact, the Azure Firewall FQDN filtering capability is extended to consider an entire URL. For example,, www.microsoft.com/a/b instead of just www.microsoft.com. This feature is also effective for encrypted traffic if TLS Inspection is enabled.

Filtering URL can also be used in conjunction with Web categorization to extend a particular category by explicitly adding multiple URLs, or to allow/deny access to URLs within your organization's intranet.

Figure 5 – URL filtering in application rules

Web categorization

Web categorization in Azure Firewall policies allows you to allow or deny users access to the Internet based on specific categories, for example, social networks, search engines, gambling, etc.

This feature can be used as a target type in the application rules in both Standard and Premium Azure Firewall SKUs. The main difference is that the Premium SKU allows you to achieve a higher level of optimization, classifying traffic by full URL, using the functionality of TLS Inspection, while the standard SKU classifies traffic only by FQDN. This function allows you to have visibility and control in the use of an organization's Internet traffic and is ideal for controlling web browsing for Azure Virtual Desktop clients.

Figure 6 – Web categorization in an access rule

The transition from version Standard to version Premium

For those who use the Azure Firewall Standard SKU and need to upgrade to the Premium SKU, they can migrate using the following steps.

  • First thing, in case they are not already in use, Azure Firewall Policy must be adopted. To do this, it is possible to transform the Azure Firewall rules (Classic) existing:

Figure 7 - Migration of classic rules to Azure Firewall Policy

  • Create a new Azure Firewall Premium by associating it with the existing Azure Firewall Policy:

Figure 8 - Creation of a new Azure Firewall Premium by associating an existing Azure Policy

Note: an important aspect to consider when migrating is maintaining the IP address or IP addresses assigned to Azure Firewall.

The cost of Azure Firewall Premium

Same as for the Standard SKU, the prices of Azure Firewall Premium are given both by the deployment, both from data processing. The cost for deployment is higher than 40% compared to Azure Firewall Standard, while the costs for data processing are the same as for Azure Firewall Standard. For more details on costs please visit the Microsoft's official page.

Conclusions

The adoption of a firewall solution to better protect and segregate network flows is now an obligatory choice to ensure effective protection and management of the network infrastructure in Azure environments. For companies with advanced control and security needs, they can use the Azure Firewall Premium SKU to expand the set of features available. Azure Firewall Premium can compete, in terms of functionality, with Network Virtual Appliances (NVA's) provided by well-known third-party vendors, for which, however, more articulated configurations are required and generally higher costs are expected.

Azure IaaS and Azure Stack: announcements and updates (July 2021 – Weeks: 27 and 28)

This series of blog posts includes the most important announcements and major updates regarding Azure infrastructure as a service (IaaS) and Azure Stack, officialized by Microsoft in the last two weeks.

Azure

Compute

Free Extended Security Updates only on Azure for Windows Server 2012/R2and SQL Server 2012

On-premises Windows Server and SQL Server customers looking to migrate and modernize can take advantage of the extension of free Extended Security Updates (ESUs) for Windows Server 2012/R2 and SQL Server 2012, as follows:

  • Windows Server 2012 and 2012 R2 Extended Support (ESU) will end on October 10, 2023. Extended Support for SQL Server 2012 ends July 12, 2022. Customers that cannot meet this deadline can protect their apps and data running on these releases for three additional years when they migrate to Windows Server and SQL Server on Azure and take advantage of free ESUs on Azure. Customers running Windows Server and SQL Server on these releases and on-premises will have the option to purchase ESUs.
  • Windows Server and SQL Server 2008 and 2008 R2 three-year ESUs are coming to an end on January 10, 2023, and July 12, 2022, respectively. Customers who need more time to migrate and modernize will be able to take advantage of a Windows Server and SQL Server 2008 and 2008 R2 on Azure, we will now provide one addiitonal year of extended security updates only on Azure.

Virtual Machine (VM) bursting is now generally available on more VM types

Virtual machine level disk bursting is a now enabled for our Dsv4, Dasv4, Ddsv4, Esv4, Easv4, Edsv4, Fsv2 and B-series VM families, which allows your virtual machine to burst its disk IO and MiB/s throughput performance for a short time daily. This enables your VMs to handle unforeseen spikey disk traffic smoothly and process batched jobs with speed. There is no additional cost associated with this new capability or adjustments on the VM pricing and it comes enabled by default.

HPC Cache on E-Series VMs Support of Blob NFS 3.0

The Azure Blob team recently announced that Blob NFS 3.0 protocol support is generally available and now, Azure HPC Cache will follow suit with general availability using E-Series VMs.

Storage

Azure File Sync agent v13

The Azure File Sync agent v13 release is being flighted to servers which are configured to automatically update when a new version becomes available.

Improvements and issues that are fixed in the v13 release:

  • Authoritative upload. Authoritative upload is a new mode available when creating the first server endpoint in a sync group. It is useful for the scenario where the cloud (Azure file share) has some/most of the data but is outdated and needs to be caught up with the more recent data on the new server endpoint. This is the case in offline migration scenarios like DataBox, for instance. When a DataBox is filled and sent to Azure, the users of the local server will keep changing / adding / deleting files on the local server. That makes the data in the DataBox and thus the Azure file share, slightly outdated. With Authoritative Upload, you can now tell the server and cloud, how to resolve this case and get the cloud seamlessly updated with the latest changes on the server. No matter how the data got to the cloud, this mode can update the Azure file share if the data stems from the matching location on the server. Be sure to avoid large directory restructures between the initial copy to the cloud and catching up with Authoritative Upload. This will ensure you are only transporting updates. Changes to directory names will cause all files in these renamed directories to be uploaded again. This functionality is comparable to semantics of RoboCopy /MIR = mirror source to target, including removing files on the target that no longer exist on the source. Authoritative Upload replaces the “Offline Data Transfer” feature for DataBox integration with Azure File Sync via a staging share. A staging share is no longer required to use DataBox. New Offline Data Transfer jobs can no longer be started with the AFS V13 agent. Existing jobs on a server will continue even with the upgrade to agent version 13.
  • Portal improvements to view cloud change enumeration and sync progress. When a new sync group is created, any connected server endpoint can only begin sync, when cloud change enumeration is complete. In case files already exist in the cloud endpoint (Azure file share) of this sync group, change enumeration of content in the cloud can take some time. The more items (files and folders) exist in the namespace, the longer this process can take. Admins will now be able to obtain cloud change enumeration progress in the Azure portal to estimate an eta for completion / sync to start with servers.
  • Support for server rename. If a registered server is renamed, Azure File Sync will now show the new server name in the portal. If the server was renamed prior to the v13 release, the server name in the portal will now be updated to show the correct server name.
  • Support for Windows Server 2022 Preview. The Azure File Sync agent is now supported on Windows Server 2022 Preview build 20348 or later. Note: Windows Server 2022 adds support for TLS 1.3 which is not currently supported by Azure File Sync. If the TLS settings are managed via group policy, the server must be configured to support TLS 1.2.
  • Miscellaneous improvements:
    • Reliability improvements for sync, cloud tiering and cloud change enumeration.
    • If a large number of files is changed on the server, sync upload is now performed from a VSS snapshot which reduces per-item errors and sync session failures.
    • The Invoke-StorageSyncFileRecall cmdlet will now recall all tiered files associated with a server endpoint, even if the file has moved outside the server endpoint location.
    • Explorer.exe is now excluded from cloud tiering last access time tracking.
    • New telemetry (Event ID 6664) to monitor the orphaned tiered files cleanup progress after removing a server endpoint with cloud tiering enabled.

To obtain and install this update, configure your Azure File Sync agent to automatically update when a new version becomes available or manually download the update from the Microsoft Update Catalog.

More information about this release:

  • This release is available for Windows Server 2012 R2, Windows Server 2016, Windows Server 2019 and Windows Server 2022 Preview installations.
  • A restart is required for servers that have an existing Azure File Sync agent installation if the agent version is less than version 12.0.
  • The agent version for this release is 13.0.0.0.
  • Installation instructions are documented in KB4588753.

Azure Blob storage: container Soft Delete

Administrators can set a retention policy and recover data from a deletion of a blob container without contacting support.

HPC Cache for NVME-based Storage, Storage Target Management, and HIPAA Compliance

The latest release of HPC Cache adds support for high throughput VMs as well as enhancements to storage target operations.

Disk pool for Azure VMware Solution (preview)

With disk pool, Azure VMware Solution customers can now access Azure Disk Storage for high-performance, durable block storage. Customer can scale their storage independent of compute and handle their growing data needs more cost-effectively.

Networking

Azure Bastion Standard SKU public (preview)

With the new Azure Bastion Standard SKU, you can now perform/configure the following: 

  • Manually scale Bastion host Virtual Machine instances: Azure Bastion supports manual scaling of the Virtual Machine (VM) instances facilitating Bastion connectivity. You can configure 2-50 instances to manage the number of concurrent SSH and RDP sessions Azure Bastion can support. 

  • Azure Bastion admin panel: Azure Bastion supports enabling/disabling features accessed by the Bastion host. 

Azure Web Application Firewall: OWASP ModSecurity Core Rule Set 3.2 (preview)

Open Web Application Security Project (OWASP) ModSecurity Core Rule Set 3.2 (CRS 3.2) for Azure Web Application Firewall (WAF) deployments running on Application Gateway is in preview. This release offers improved security from web vulnerabilities, reduced false positives, and improvements to performance. Microsoft is also announcing an increase in the file upload limit and request body size limit to 4GB and 2MB respectively.

Azure IaaS and Azure Stack: announcements and updates (July 2021 – Weeks: 25 and 26)

This series of blog posts includes the most important announcements and major updates regarding Azure infrastructure as a service (IaaS) and Azure Stack, officialized by Microsoft in the last two weeks.

Azure

Compute

Azure VM Image Builder service: custom image building process

Azure VM Image Builder service is a managed service to build custom Linux or Windows virtual machine (VM) images with ease, and be compliant with your company’s security policy across Azure and Azure Stack. With Azure VM Image Builder, the Microsoft managed service built on HashiCorp Packer, you can describe custom images in a template using new or existing configurations and enables VM image building immediately without setting up and managing your own image building pipeline.

New Azure VMs for confidential workloads (Limited Preview)

Microsoft is announcing the limited preview go-live of the DCsv3-series and DCdsv3-series Azure Virtual Machines, starting in the East US 2 region. Leveraging Intel Software Guard Extensions (SGX), you can allocate private regions of memory, called enclaves, giving you more granular protection against processes or administrators with higher privilege levels. These new VMs enable you to protect the confidentiality and integrity your code and data while in use.

Storage

Azure Blob storage: NFS 3.0 protocol support

Network File System (NFS) 3.0 protocol support for Azure Blob Storage is generally available. Azure Blob Storage is the only storage platform that supports NFS 3.0 protocol over object storage natively (no gateway or data copying required), with object storage economics. The data stored in your storage account with NFS support is billed at the same rate as blob storage capacity charges with no minimal provisioned capacity required.

Azure NetApp Files: regional Capacity Quota

The default capacity quota for each subscription will be changed from no quota to a quota of 25 TiB, per region, across all service levels. This capacity change will not have any impact on your current service but will ensure (new) capacity pool creation or capacity pool size increases will succeed based on available regional capacity. Any regional capacity quota increase does not incur a billing increase, as billing will still be based on the provisioned capacity pools.

Expansion of credit-based disk bursting to Azure Standard SSDs E30 and smaller

Credit-based disk bursting is now available on Azure Standard SSDs E30 and smaller (less than or equal to 1TiB). With credit-based bursting, your disks can burst IOPS and throughput for a short-time (up to 30 minutes) to handle unexpected disk traffic and process batch jobs with speed. Now you can deploy your disks for their average performance needs instead of for peak performance, enabling you to achieve cost savings. All your existing or new Standard SSD disks (less than or equal to 1TiB) will have credit-based bursting enabled by default with no user action or addition costs.

Expansion of on-demand disk bursting for Premium SSD to more regions (preview)

Microsoft has now expanded the preview of on-demand disk bursting to all production regions. You can enable on-demand bursting on existing or new disks following instructions here.

Networking

VPN NAT (preview)

Azure VPN NAT (Network Address Translation) supports overlapping address spaces between customers on-premises branch networks and their Azure Virtual Networks. NAT can also enable business-to-business connectivity where address spaces are managed by different organizations and re-numbering networks is not possible. VPN NAT preview provides support for 1:1 Static NAT.

Azure IaaS and Azure Stack: announcements and updates (June2021 – Weeks: 23 and 24)

This series of blog posts includes the most important announcements and major updates regarding Azure infrastructure as a service (IaaS) and Azure Stack, officialized by Microsoft in the last two weeks.

Azure

Compute

Confidential Computing price reduction on DCsv2 virtual machines

DCsv2-series protects the confidentiality and integrity of your data and code while it’s processed in the public cloud. Microsoft is announcing a price reduction on DCsv2-series Azure Virtual Machines by 37%. The new pricing is effective June 1st, 2021, and applies to all the regions where DCsv2-series is available.

New datacenter region in Arizona

Microsoft is launching a new sustainable datacenter region in Arizona, known as “West US 3.” For more details you can read “Expanding cloud services: Microsoft launches its sustainable datacenter region in Arizona“.

Azure Virtual Machines DCsv2-series are available in Australia

Confidential computing DCsv2-series virtual machines (VMs) are now available in Australia East, Austria Southeast will launch in the coming weeks to provide disaster recovery capabilities.

Storage

Azure Blob index tags

Prior to index tags, solutions that required the ability to quickly find specific objects in a blob container would need to keep a secondary catalog. Blob index tags provides a built in capability to add tags and then quickly query for or filter using this information. This provides a simpler solution without requiring a separate query system. This includes the ability to set index tags both upon upload or after upload. You can utilize these indexes as part of lifecycle management that automates deletion and movement between tiers.

Networking

New Azure private MEC solution announced

An evolution of Private Edge Zones, Azure private multi-access edge compute (MEC) expands the scope of possibilities from a single platform and service to a combination of edge compute, multi-access networking stacks, and the application services that run together at the edge. These capabilities help simplify integration complexity and securely manage services from the cloud for high-performance networking and applications.

In addition to the Azure private MEC solution, we are announcing the following Microsoft and partner services and solutions:

  • New Azure Network Function Manager (public preview) service
  • Metaswitch Fusion Core third-party services on Azure Stack Edge
  • Affirmed Private Network Service third-party service on Azure Stage Edge
  • New Azure Marketplace solutions from our partners’

Default Rule Set 2.0 for Azure Web Application Firewall (preview)

The Default Rule Set 2.0 (DRS 2.0) for Azure Web Application Firewall (WAF) deployments running on Azure Front Door is in preview. This rule set is only available on the Azure Front Door Premium SKU. DRS 2.0 includes the latest changes to our rule set, including the addition of anomaly scoring. With anomaly scoring, incoming requests are assigned an anomaly score when they violate WAF rules and an action is taken only when they breach an anomaly threshold. This helps drastically reduce false positives for customer applications. Also included in DRS2.0 are rules powered by Microsoft Threat Intelligence which offer increased coverage and patches for specific vulnerabilities.

Azure IaaS and Azure Stack: announcements and updates (June 2021 – Weeks: 21 and 22)

This series of blog posts includes the most important announcements and major updates regarding Azure infrastructure as a service (IaaS) and Azure Stack, officialized by Microsoft in the last two weeks.

Azure

Storage

Azure Storage Blob inventory is now available in all public regions (preview)

Azure blob storage inventory provides you the ability to understand the total number of objects, their size, tier, and other information to gain insight into your object storage estate. Inventory can be used with Azure Synapse to calculate summaries by container. Microsoft has expanded preview to all public regions for blob inventory.

Key Rotation and Expiration Policies

Key rotation is one of the best security practices to reduce the risk of secret leakage for enterprise customers. Customers using Azure Storage account access keys can rotate their keys on demand, in the absence of key expiry dates and policies customers find it difficult to enforce and manage this key rotation automatically. The new feature will allow you to not only set key expiration duration but also add policies that can mandate anyone deploying storage endpoints to specify key rotation duration. Furthermore, you would be able to monitor key expiration and set alerts if a key is about to expire. For accounts that are nearing key expiry, you can rotate the keys using APIs, CLI, Powershell, or Azure Portal.

Networking

ExpressRoute Global Reach Pricing Reduction

Microsoft is annoucing a 50% decrease in the data transfer price for ExpressRoute Global Reach. This pricing change will go into effect as of June 1, 2021. For more information about ExpressRoute Global Reach pricing, visit the ExpressRoute Pricing webpage.

Azure Stack

Azure Stack HCI

Azure Kubernetes Service (AKS) on Azure Stack HCI

Azure Kubernetes Services (AKS) on Azure Stack HCI simplifies the Kubernetes cluster deployment on Azure Stack HCI. It offers hybrid capabilities and consistency with Azure Kubernetes Service for ease of app portability and management. You can take advantage of familiar tools and capabilities to modernize both Linux and Windows .NET apps on-premises. Furthermore, its built-in security enables you to deploy your modern applications anywhere: cloud, on-premises, and edge.

Free Trial Now Available

The Azure Stack HCI team has extended the built-in free software trial from 30 days to 60 days giving more time for customers and partners to evaluate their virtual workloads on Azure Stack HCI in planning their purchase decision. There’s nothing you need to do to enable the trial duration, it’s been automatically extended.

Available in China

Azure Stack HCI is now available in the China cloud – making it very easy to get all the benefits of Azure Stack HCI.

New feature called Network ATC

The next update available to Azure Stack HCI subscribers will be 21H2 which is in preview right now. With this update comes a new feature called Network ATC, which simplifies the deployment and management of networking on your HCI hosts.

If you’ve deployed Azure Stack HCI previously, you know that network deployment can pose a significant challenge. You might be asking yourself:

  • How do I configure or optimize my adapter?
  • Did I configure the virtual switch, VMMQ, RDMA, etc. correctly?
  • Are all nodes in the cluster the same?
  • Are we following the best practice deployment models?
  • (And if something goes wrong) What changed!?

So, what does Network ATC actually set out to solve? Network ATC can help:

  • Reduce host networking deployment time, complexity, and errors
  • Deploy the latest Microsoft validated and supported best practices
  • Ensure configuration consistency across the cluster
  • Eliminate configuration drift

Network ATC does this through some new concepts, namely “intent-based” deployment. If you tell Network ATC how you want to use an adapter, it will translate, deploy, and manage the needed configuration across all nodes in the cluster.

Azure IaaS and Azure Stack: announcements and updates (May 2021 – Weeks: 19 and 20)

This series of blog posts includes the most important announcements and major updates regarding Azure infrastructure as a service (IaaS) and Azure Stack, officialized by Microsoft in the last two weeks.

Azure

Storage

Zone redundant storage (ZRS) option for Azure managed disks (preview)

Zone redundant storage (ZRS) option for Azure managed disks is now available on Premium SSDs and Standard SSDs in public preview in: West Europe, North Europe, West US 2 and France Central regions. Disks with ZRS provide synchronous replication of data across the zones in a region, enabling disks to tolerate zonal failures which may occur due to natural disasters or hardware issues. Disks with ZRS maintain three consistent copies of the data in distinct Availability Zones in a region, making them tolerant to outages. They also allow you to maximize your virtual machine availability without the need for application-level replication of data across zones, which is not supported by many legacy applications such as old versions of SQL or industry-specific proprietary software. This means that, if a virtual machine becomes unavailable in an affected Zone, you can continue to work with the disk by mounting it to a virtual machine in a different zone. You can also use the ZRS option with shared disks to provide improved availability for clustered or distributed applications like SQL FCI, SAP ASCS/SCS or GFS2.

Lower pricing for provisioned throughput on Azure Ultra Disks

Microsoft is announcing a price reduction on provisioned throughput for Azure Ultra Disks by 65%. The new pricing is effective May 1st, 2021, and applies to all the regions where Ultra Disks are available. Azure Ultra Disks offer high throughput, high IOPS, and consistent low latency disk storage for Azure Virtual Machines (VMs).

Azure NetApp Files: Application Consistent Snapshot tool (AzAcSnap)

The Azure Application Consistent Snapshot tool (AzAcSnap) is a command-line tool enables you to simplify data protection for third-party databases (SAP HANA) in Linux environments (for example, SUSE and RHEL). Since the January 2021 preview announcement, AzAcSnap has seen wide adoption among enterprise customers for fast backup of Azure NetApp Files volumes including multi-TB databases and scale-out scenarios for SAP HANA. Now it is available.

Azure File Sync agent v12.1

The v12.0 agent release had two bugs which are fixed in this release:

  • Agent auto-update fails to update the agent to a later version.
  • FileSyncErrorsReport.ps1 script does not provide the list of per-item errors.

If agent version 12.0 is installed on your servers, you will need to update to v12.1 using Microsoft Update or Microsoft Update Catalog (see installation instructions in KB4588751).

More information about this release:

  • This update is available for Windows Server 2012 R2, Windows Server 2016 and Windows Server 2019 installations.
  • The agent version for this release is 12.1.0.0.
  • A restart may be required if files are in use during the installation.
  • Installation instructions are documented in KB4588751.

Networking

Virtual Network peering support for Azure Bastion

Azure Bastion and VNet peering can be used together. When VNet peering is configured, you don’t have to deploy Azure Bastion in each peered VNet. This means if you have an Azure Bastion host configured in one virtual network (VNet), it can be used to connect to VMs deployed in a peered VNet without deploying an additional Bastion host.

Azure VPN Client for macOS (preview)

Azure VPN Client for macOS, with support for native Azure AD, certificate-based, and RADIUS authentication for OpenVPN protocol is in public preview. Native Azure AD authentication support is highly desired by organizations as it enables user-based policies, conditional access, and multi-factor authentication (MFA) for P2S VPN. Native Azure AD authentication requires both Azure VPN gateway integration and the Azure VPN Client to obtain and validate Azure AD tokens. With the Azure VPN Client for macOS, customers can use user-based policies, Conditional Access, as well as Multi-factor Authentication (MFA) for their Mac devices.

Application Gateway Mutual Authentication (preview)

Azure Application Gateway now supports the ability to perform frontend mutual authentication. In addition to the client authenticating Application Gateway in a request, Application Gateway can now also authenticate the client. You can upload multiple client Certificate Authority (CA) certificate chains for Application Gateway to use for client authentication. Additionally, Application Gateway also allows you to configure listener specific SSL policies. You can choose to enable mutual authentication at a per listener level on your gateway, as well as choose to pass client authentication information to the backends through server variables. This feature enables scenarios where Application Gateway needs to authenticate the client in addition to the client authenticating Application Gateway.

Azure ExpressRoute: 5 New Peering Locations Available

New peering locations are now available for ExpressRoute:

  • Bogota
  • Madrid
  • Sao Paulo
  • Rio de Janeiro
  • Toronto2

With this announcement, ExpressRoute is now available across 75 global commercial Azure peering locations.

Secure network architecture design for Azure Kubernetes Service (AKS)

The trend in adopting applications based on microservices requires the use of state-of-the-art solutions capable of managing a large number of containers and the ways in which these interact in application with each other, as Azure Kubernetes Service (AKS). As part of the design of Azure Kubernetes Service architectures (AKS) there are several elements that need to be evaluated to obtain an appropriate network topology that can ensure maximum efficiency and security. This article outlines the main points to consider, accompanied by some proposals, to make informed choices when designing network architectures for AKS.

What is Azure Kubernetes Service (AKS)?

Azure Kubernetes Service (AKS) is the fully managed Azure service that allows the activation of a Kubernetes cluster, ideal for simplifying the deployment and management of microservices-based architectures. Thanks to the features offered by AKS it is possible to scale automatically according to the use, use controls to ensure the integrity of the services, implement load balancing policies and manage secrets. In microservices-based architectures, it is also common to adopt the Azure Container Registry that allows you to create, store and manage container images and artifacts in a private registry. The use of this managed service is integrated with the container development and deployment pipelines.

Figure 1 - Azure Kubernetes Service architecture example (AKS)

The network topology

In the network architecture of type Hub and Spoke, theHub is a virtual network on Azure that serves as the point of connectivity to the on-premises network. This connectivity can be done through VPN Site to site or through ExpressRoute. TheSpoke are virtual networks running the peering with the Hub and can be used to isolate workloads.

Figure 2 - Hub and Spoke network topology

This network topology is also recommended for AKS architectures as it can offer several advantages, including:

  • Environmental segregation to more easily enforce governance policies and gain greater control. This topology also supports the concept of "landing zones" by contemplating the separation of duties.
  • Minimizing the direct exposure of Azure resources to the public network (Internet).
  • Possibility of contemplating workloads attested on different Azure subscriptions, becoming a natural choice in these scenarios.
  • Ability to easily extend the architecture to accommodate new features or new workloads, simply by adding additional spoke virtual networks.
  • Ability to centralize Azure services shared by multiple workloads in a single location (attested on different VNet), such as DNS servers and any virtual network appliances. It also reduces the VPN Gateways to provide connectivity to the on-premises environment, resulting in savings on Azure costs and simplification of the architecture.

Figure 3 - Hub and Spoke network topology for AKS

Hub Virtual Network

In the Hub network it is possible to evaluate the adoption of the following services:

  • VPN or ExpressRoute Gateway: necessary to provide connectivity to the on-premises environment.
  • Firewall Solutions, necessary in case you want to control the traffic from your AKS environment, as pods or cluster nodes, outgoing to external services. In this context, the choice can fall between:
    • Azure Firewall, the firewall-as-a-service solution (FWaaS) which allows to secure the resources present in the Virtual Networks and to govern the related network flows.
    • Network Virtual Appliances (NVA's) provided by third party vendors. Such solutions are numerous and can offer advanced functionality, but typically the configuration of these solutions is more complex and the cost tends to be higher than the solution provided by the Azure platform. A comparison between the new Azure Firewall and third-party virtual appliances can be found in this article.
  • Azure Bastion, the PaaS service that offers secure and reliable RDP and SSH access to virtual machines, directly through the Azure portal.

Spoke Virtual Network

The AKS cluster is placed in the Spoke network together with other resources closely related to its operation. Spoke VNet is split into different subnets to accommodate the following components:

  • The two groups of nodes (node pools) in AKS:
    • AKS System Node pool: the pool of system nodes that host the pods needed to run the core services of the cluster.
    • AKS User Node pool: the pool of user nodes that run the application workloads and the ingress controller.

For multi-tenant application environments or for workloads with advanced needs, it may be necessary to implement isolation mechanisms of node pools that require the presence of different subnets.

  • AKS Internal Load Balancer: the balancer to route and distribute inbound traffic for Kubernetes resources. In this case the component is used Azure Load Balancer, which enables Layer-4 load balancing for all TCP and UDP protocols, ensuring high performance and very low latencies.
  • Azure Application Gateway: it is a service managed by the azure platform, with inherent features of high availability and scalability. The Application Gateway is a application load balancer (OSI layer 7) for web traffic, that allows you to govern HTTP and HTTPS applications traffic (URL path, host based, round robin, session affinity, redirection). The Application Gateway is able to centrally manage certificates for application publishing, using SSL and SSL offload policy when necessary. The Application Gateway may have assigned a private IP address or a public IP address, if the application must be republished in Internet. In particular in the latter case, it is recommended to turn onWeb Application Firewall (WAF), that provides application protection, based on rulesOWASP core rule sets. The WAF protects the application from vulnerabilities and against common attacks, such as X-Site Scripting and SQL Injection attacks.

Thanks to the adoption of Azure Private Link you can bring Azure services to a virtual network and map them with a private endpoint. In this way, all traffic is routed through the private endpoint, keeping it on the Microsoft global network. The data does not pass ever on the Internet, this reduces exposure to threats and helps to meet the compliance standards.

Figure 4 - Overview of Azure Private Link

In AKS environments theAzure Private Link they are usually created in the Spoke virtual network subnets for Azure Container Registry and Azure KeyVault.

Below is a diagram with the incoming and outgoing network flows for an AKS environment, which also includes the presence of Azure Firewall to control outgoing traffic.

Figure 5 - Example of network flows in a typical AKS architecture

Management traffic

In order to allow the management of the environment, such as creating new resources or carrying out activities to scale the cluster environment, it is advisable to provide access to the Kubernetes API. Good practice is apply network filters to authorize this access in a timely manner.

Private AKS cluster

In case you want to implement a totally private AKS environment, where no Internet service is exposed, it is possible to adopt a AKS cluster in "private" mode.

Conclusions

The increasing demand for microservices-based application architectures that useAzure Kubernetes Service (AKS) requires you to locate and build network architectures designed to be secure, flexible and with a high level of integration. All this must take place through a modern approach able to fully exploit the potential offered in the field of networking by Azure.

Azure IaaS and Azure Stack: announcements and updates (May 2021 – Weeks: 17 and 18)

This series of blog posts includes the most important announcements and major updates regarding Azure infrastructure as a service (IaaS) and Azure Stack, officialized by Microsoft in the last two weeks.

Azure

Compute

Azure Hybrid Benefit for Linux with RI and VMSS Support

Azure Hybrid Benefit is available for Linux, extending the ability to easily migrate RHEL and SLES servers to Azure beyond existing pay-as-you-go instances to include support for Azure Reserved Instance (RI) and virtual machine scale set (VMSS).

While previous Bring-Your-Own-Subscription cloud migration options available to Red Hat and SUSE customers allowed them to use their pre-existing RHEL and SLES subscriptions in the cloud, Azure Hybrid Benefit for Linux improves upon this with several capabilities unique to Azure making enterprise Linux cloud migration even easier than before:

  • Applies to all Red Hat Enterprise Linux and SUSE Linux Enterprise Server pay-as-you-go images available in the Azure Marketplace or Azure Portal. No need to provide your own image.
  • Save time with seamless post-deployment conversions—production redeployment is unnecessary. Simply convert the pay-as-you-go images used during your proof-of-concept testing to bring-your-own-subscription billing.
  • Lower ongoing operational costs with automatic image maintenance, updates, and patches: Microsoft maintains the converted RHEL and SLES images for you.
  • Enjoy the convenience of unified user interface integration with the Azure CLI, providing the same UI as other Azure virtual machines, as well as scalable batch conversions.
  • Get co-located technical support from Azure, Red Hat, and SUSE with just one ticket.
  • Combine with recently announced Red Hat and SUSE support for Azure shared disks to lift-and-shift failover clusters and parallel file systems, like Global File System.
  • Fully compatible with Azure Arc, providing end-to-end hybrid cloud operations management for Windows, RHEL, and SLES servers in one solution.

New Azure VMs for general purpose and memory intensive workloads (preview)

The new Dv5, Dsv5, Ddv5, Ddsv5, and Ev5, Edv5 series Azure Virtual Machines, now in preview, are based on the 3rd Generation Intel® Xeon® Platinum 8370C (Ice Lake) processor in a hyper-threaded configuration. This custom processor can reach an all-core Turbo clock speed of up to 3.5GHz and features Intel® Turbo Boost Technology 2.0, Intel® Advanced Vector Extensions 512 (Intel® AVX-512) and Intel® Deep Learning Boost. These new offerings deliver a better value proposition for general-purpose, and memory intensive workloads compared to the prior generation (e.g., increased scalability and an upgraded CPU class) including better price to performance.

The Dv5, Dsv5, Ddv5, Ddsv5 VM sizes offer a combination of vCPUs and memory able to meet the requirements associated with most general-purpose workloads and can scale up to 96 vCPUs. The Ddv5 and Ddsv5 VM sizes feature high performance, large local SSD storage (up to 2,400 GiB). The Dv5 and Dsv5 VM series offer a lower price of entry since they do not feature any local temporary storage. If you require temporary storage select the latest Ddv5 or Ddsv5 Azure virtual machines, which are also in Preview.

The Ev5 and Edv5 VM sizes feature up to 672 GiB of RAM and are ideal for memory-intensive enterprise applications. You can attach Standard SSDs and Standard HDDs disk storage to these VMs. If you prefer to use Premium SSD or Ultra Disk storage, please select the Esv5 and Edsv5 VM series, which will be in preview in the near future. The Ev5 and Esv5 VMs offer a lower price of entry since they do not feature any local temporary storage. If you require temporary storage select the latest Edv5 VM series which are also in preview, or the Edsv5 VM series, which will be in preview in the near future.

New NPv1 virtual machines

NPv1 series virtual machines are a new addition to the Azure product offering. These instances are powered by Xilinx Alveo U250 FPGAS. These highly-programmable accelerators benefit a variety of computationally intensive workloads such as genomics, image-processing, security, data analysis and more. The NP series offering is based upon the commercially available U250 from Xilinx and uses a standard shell easing the difficulties of migrating existing FPGA workloads & solutions to the cloud. New Xilinx Alveo U250 FPGA NPv1 VMs are now generally available in West US 2, East US, West Europe, and Southeast Asia.

Microsoft acquires Kinvolk to accelerate container-optimized innovation

Microsoft is excited to bring the expertise of the Kinvolk team to Azure and having them become key contributors to the engineering development of Azure Kubernetes Service (AKS), Azure Arc, and future projects that will expand Azure’s hybrid container platform capabilities and increase Microsoft’s upstream open source contributions in the Kubernetes and container space. Microsoft is also committed to maintaining and building upon Kinvolk’s open source culture. The Kinvolk team will continue to remain active in their existing open source projects and will be essential to driving further collaboration between Azure engineering teams and the larger open source container community.

Storage

Azure Blob storage: NFS 3.0 protocol support public preview now expands to all regions

Azure Blob storage is the only public cloud storage platform that supports NFS 3.0 protocol over object storage natively (no gateway or data copying required), with object storage economics. This new level of support is optimized for high-throughput, read-heavy workloads where data will be ingested once and minimally modified further, such as large-scale analytic data, backup and archive, media processing, genomic sequencing, and line-of-business applications. Azure Blob Storage NFS 3.0 preview supports general purpose v2 (GPV2) storage accounts with standard tier performance in all publicly available regions. Further, Microsoft is enabling a set of Azure blob storage features in premium blockblob accounts with NFS 3.0 feature enabled such as blob service REST API and lifecycle management.

Attribute-based Access Control (ABAC) in preview

Attribute-based access control (ABAC) is an authorization strategy that defines access levels based on attributes associated with security principals, resources, requests, and the environment. Azure ABAC builds on role-based access control (RBAC) by adding conditions to Azure role assignments in the existing identity and access management (IAM) system. This preview includes support for role assignment conditions on Blobs and ADLS Gen2, and enables you to author conditions based on resource and request attributes.

Prevent Shared Key authorization for an Azure Storage account

Every secure request to an Azure Storage account must be authorized. By default, requests can be authorized with either Azure Active Directory (Azure AD) credentials, or by using the account access key for Shared Key authorization. Of these two types of authorization, Azure AD provides superior security and ease of use over Shared Key and is recommended by Microsoft. To require clients to use Azure AD to authorize requests, you can disallow requests to the storage account that are authorized with Shared Key. Microsoft is announcing the general availability of the ability to disable Shared Key authorization for Azure Storage.

Append blob support in Azure Data Lake Storage

Append blobs provide a simple and effective way of adding new content to the end of a file or blob when the existing content does not need to be modified. This makes append blobs great for applications such as logging that need to add information to existing files efficiently and continuously. Until now, only block blobs were supported in Azure Data Lake Storage accounts. Applications can now also create append blobs in these accounts and write to them using Append Block operations. These append blobs can be read using existing Blob APIs and Azure Data Lake Storage APIs.

Networking

Multiple features for Azure VPN Gateway

The following features for Azure VPN Gateway are general available:

  • Multiple authentication types for point-to-site VPN – You can now enable multiple authentication types on a single gateway for OpenVPN tunnel type. Azure AD, certificate-based and RADIUS can all be enabled on a single gateway.
  • BGP diagnostics – You can now see the Border Gateway Protocol session status, route advertised and routes learnt by the VPN Gateway.
  • VPN packet capture in Azure portal – Support for packet capture on the VPN Gateway is now availbe in the Azure portal.
  • VPN connection management – With new enhancements in VPN connection management capabilities, you can now reset an individual connection instead of resseting the whole gateway. You can also set the Internet Key Exchange (IKE) mode of the gateway to responder-only, initiator-only or both and view the Security Association (SA) of a connection.

Azure IaaS and Azure Stack: announcements and updates (April 2021 – Weeks: 15 and 16)

This series of blog posts includes the most important announcements and major updates regarding Azure infrastructure as a service (IaaS) and Azure Stack, officialized by Microsoft in the last two weeks.

Azure

Compute

New M-series Msv2/Mdsv2 Medium Memory VMs for memory-optimized workloads

Azure Msv2/Mdsv2 Medium Memory Series offering up to 192vCPU and 4TB memory configurations and running on Cascade Lake processor are now generally available. Msv2/Mdsv2 medium memory VM sizes providing a 20% increase in CPU performance, increased flexibility with local disks, and a new intermediate scale up-option. These virtual machines provide unparalleled computational performance to support large in-memory databases and workloads such as SAP HANA and SQL Hekaton.

Azure Virtual Machines DCsv2-series in Azure Government (public preview)

Azure Government customers can build secure, enclave-based applications to protect code and data while it’s in use, in a dedicated cloud that meets stringent government security and compliance requirements. Confidential computing DCsv2-series virtual machines are now in preview for Azure Government customers (federal, state, local governments, and their partners) in US Government Virginia and Arizona regions. These VMs are backed by Intel XEON E-2288G processors with Intel Software Guard Extensions (SGX) technology.

Microsoft announces plans to establish first datacenter region in Malaysia

The new datacenter region is part of the “Bersama Malaysia” initiative to support inclusive economic growth in Malaysia.

Storage

Azure Blob storage supports objects up to 200 TB in size

Workloads that utilize larger file sizes such as backups, media, and seismic analysis can now utilize Azure Blob storage and ADLS Gen2 without breaking these large files into separate blobs. Each blob is made up of up to 50,000 blocks. Each block can now be 4GB in size for a total of 200 TB per blob or ADLS Gen2 file.

Lustre HSM tools to import from or export to Azure Storage

Lustre HSM (Hierarchical Storage Management) provides the capability to associate a Lustre file system with an external storage system and migrate file data between them.

Now available are the File System Hydrator and Copy Tool, which enables integrating a Lustre file system with an Azure storage account:

  • The File System Hydrator is used to import a file system namespace from an Azure storage account into a Lustre file system with the imported files left in the ‘released’/’exist’ state.
  • The Copy Tool is used to hydrate the content of the files in the storage account into the Lustre file system on-demand. The copy tool can also be used to archive content of files back into the storage account, including changed or added files.

Networking

Application Gateway URL Rewrite

Azure Application Gateway now supports the ability to rewrite host name, path and query string of the request URL. In addition to header rewrites, you can now also rewrite URL of all or some of the client requests based on matching one or more conditions as required. You can choose to route the request based on the original URL or the rewritten URL. This feature enables several important scenarios such as allowing path based routing for query string values and support for hosting friendly URLs.